Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный технический университет»

Факультет технологии конструкционных материалов

Кафедра «Технология материалов»

ОТЧЕТ

Об учебной практике

(вид практики)

(ознакомительная практика)

(тип практики)

наимен	ОГИЯ МАТЕРИАЛОВ» нование кафедры или рохождения практики вне унивы	ерситета)
Руководитель практики от организации <u>ФГБУ ВО «ВолгГТ</u>	У» кафедра «Технолог название организации	гия материалов»
ст. преподаватель	подпись	_ <u>Косова Е.А.</u>
Руководитель практики от университета <u>ст. преподава</u> должность	<u>атель</u>	<u>Косова Е.А.</u> Ф.И.О.
Студент гр.МЛВ -269	подпись	<u>Атаджанов В.В.</u> Ф.И.О.
Отчет защищен с оценкой	подпись руководителя практики от вуза	дата

УТВЕРЖДАЮ

Заведующий кафедрой <u>«ТМ»</u> Руцкий Д.В.

(подпись) (расшифровка подписи) «09» февраля 2023 г

ЗАДАНИЕ

на учебную практику (ознакомительная практика)

- 1. Изучить структуру и ознакомиться с лабораториями кафедры «Технология материалов».
- 2. Изучить структуру металлургического предприятия с неполным циклом производства.

	Содержание	стр
1.	Структура и описание кафедры «Технология материалов»	4
1.1	История кафедры	4
1.2	Научная деятельность кафедры	5
1.3	Учебная работа кафедры	5
1.4	Структура кафедры «Технология материалов»	6
1.5	Материально-техническое обеспечение и оснащенность образовательного процесса на кафедре «Технология материалов»	7
2.	Структура металлургического предприятия с неполным циклом производства	8
2.1	краткое описание формы управления и структуры управления предприятием	9
2.2	описание организации и управления деятельностью структурного подразделения	11
2.3	основной перечень продукции, выпускаемой предприятием или структурным подразделением, ее целевое назначение и соответствие современным требованиям	13
	Список используемой литературы	15

1. Структура и описание кафедры «Технология материалов»

1.1 История кафедры:

была 1964 Кафедра «Технология материалов» создана году общетехническая, преподаватели которой читали всем студентам Волгоградского политехнического института лекции по технологии конструкционных материалов и Ee главный проводили ознакомительные практики. возглавил металлург Волгоградского судостроительного завода, кандидат технических наук, доцент Авенир Петрович Кофман. В первые годы своего существования преподаватели читали лекции по общему курсу технологии материалов ознакомительную практику на промышленных предприятиях города со студентами младших курсов всех факультетов.

научно-По заказам волгоградских предприятий кафедра выполняла исследовательские работы по совершенствованию процессов термообработки и повышению качества обрабатываемых изделий. В связи с интенсивным развитием промышленного потенциала Волгограда и области возникла необходимость в подготовке высококвалифицированных специалистов в области термической обработки металлов и сплавов. С 1974 года кафедра становится выпускающей по специальности «Металловедение и термическая обработка металлов». За годы своего существования на кафедре было выпущено свыше 1200 специалистов в области металловедения и термообработки металлов, успешно работающих на предприятиях города области, а также в других регионах страны.

В 1973 г. кафедру возглавил доктор технических наук, профессор Виктор Васильевич Заболеев-Зотов. В это время кафедра получила статус профилирующей кафедры, на нее была возложена подготовка инженеров по специальности «Металловедение, оборудование и термическая обработка». Это потребовало от коллектива создания за короткий срок всех необходимых лабораторий и оснащения их оборудованием, обеспечивающим как учебный процесс, так и проведение научных исследований.

С 1987 по 1999 гг. кафедрой заведовал кандидат технических наук, доцент Юрий Александрович Бондарев (1945–1999 гг.), с 2000 г. по 2008 г. кафедру возглавлял доктор технических наук, лауреат премии правительства РФ профессор Сергей Иванович Жульев (1948–2008 гг.).

С июня 2008 г. по июнь 2021 г. кафедрой заведует доктор технических наук, профессор, Почётный работник высшей школы РФ, декан факультета технологии конструкционных материалов Николай Александрович Зюбан.

С июля 2021 г. заведующим кафедры становиться к.т.н., доцент Руцкий Дмитрий Владимирович.

1.2 Научная деятельность кафедры

Научные разработки кафедры связаны с исследованием и разработкой новых технологий получения высококачественного металла для крупных слитков и поковок за счёт управления процессами разливки и кристаллизации расплава, и технологии ковки крупногабаритных заготовок.

Развитие и создание технологий получения высококачественных крупногабаритных изделий для ответственных агрегатов и узлов энергетического машиностроения.

Развитие и совершенствование технологии получения непрерывнолитых заготовок для трубной продукции нефтегазовой отрасли.

Проблемы утилизации и регенерации отходов металлургического производства, развитие ресурсосберегающих технологий.

Совершенствование и разработка эффективных технологий сталепроволочно-канатного производства

1.3 Учебная работа кафедры

Кафедра выпускает бакалавров по направлению «Металлургия», профиль подготовки «Металловедение и термическая обработка металлов» (очная и очнозаочная формы обучения), «Обработка металлов давлением» (очная форма обучения). Магистров по направлению «Металлургия», профиль подготовки «Металловедение и термическая обработка металлов» (очная форма обучения),

профиль подготовки «Прокатно-волочильное и кузнечно-штамповочное производство» (очная форма обучения), «Металлургия и металловедение алюминиевых сплавов» (очно-заочная форма обучения).

В настоящее время на кафедре ведётся подготовка студентов по направлению: 22.03.02 – Металлургия (бакалавриат) по профилям:

- Металловедение и термическая обработка металлов;
- Обработка металлов давление;
- Трубное производство.

По направлению 22.04.02 – Металлургия (магистратура) по программам:

- Металловедение и термическая обработка металлов;
- Прокатно-волочильное и кузнечно-прессовое производство.

На кафедре функционирует аспирантура для подготовки кадров высшей специальности по направлению 22.06.01 — Технологии материалов, по специальности 05.16.02 — Металлургия чёрных, цветных и редких металлов.

1.4 Структура кафедры «Технология материалов»

Расположение помещений для проведения научно-исследовательских и лабораторных работ.

Волгоградский государственный технический университет (400005, Россия,

Волгоградская обл., г. Волгоград, проспект им. В.И. Ленина, д. 28.)

Учебный корпус №3 (А) 400005, Волгоград, ул. Советская, 31:

Лаборатория "Физика металлов", ауд. А-305

Металлографическая лаборатория, ауд. А-306

Лаборатория металлургической теплотехники и автоматизации процессов термической обработки. Ауд. A-310

Лаборатория термической обработки ауд. А-311

Лаборатория металлургической теплотехники и автоматизации процессов термической обработки. Ауд. A-310

Компьютерный класс для самостоятельной работы студентов, аспирантов и курсового проектирования, ауд. А-400

корпоративная учебная аудитория ПАО «ТМК», ауд. А-401

Лаборатория ОМД 010а (ГУК)

Факультет переподготовки инженерных кадров (400006, Россия, Волгоградская обл.,

г. Волгоград, ул. Дегтярёва, д. 2)

Лаборатория "Сварки" ауд Т-101

Лаборатория "Металлургии и литейного производства" ауд. Т-102

Лаборатория обработки металлов давлением ауд. Т-005

Лаборатория механической обработки, ауд. Т-006

Вечерний технологический факультет (400051, Россия, г. Волгоград, пр. Столетова, 8.)

Лаборатория сопротивления материалов, ауд 14

1.5 Материально-техническое обеспечение и оснащенность образовательного процесса на кафедре «Технология материалов»

$N_{\underline{0}}$	Наименование	Оборудование
Π/Π	аудитории	
17	Лаборатория металлургической теплотехники и автоматизации процессов термической обработки. Ауд. А-310	Печь электрическая СНОЛ 1,6/2,5 (Зшт). Пресс гидравлический. г/п 10т 650В. Потенциометр КСП-4 (4 шт). Термометр многоканальный ТМ-5103/RS232. Электропечь лабораторная SNOL 7,2/1300 (Зшт). Печь лабораторная ПЛ20/12,5. Сушильный шкаф UТ-4610. Электропечь СНОЛ 7,2/1100. Электропечь СНОЛ12/16. Электропечь ТАМАНА "ASEA TLD-3545". Тепловизор TESTO 875-2i
17	Лаборатория "Физика металлов", ауд. А-305	Установка магитномтерическая У578. Электроные цифровые мосты и потенциоеметры Р-363 для измерения электррических свойств металов. Универсальный вакуумный дилатометр УВД. Печь СНОЛ 7,2/1100. Печь тигельная КЕЛ-ПТ-59. Потенциоемтр КСП-4 (4 шт). Прибор Р-5010 (2 шт). Мост ВМ-431 ВС. Потенциометр ПДС021М-3 шт. Установка ПТУ-51. Весы ВЛР-200.
17	Металлографическая лаборатория, ауд. А-306	Оптические микроскопы МИМ-8 (4 шт) МИМ-7 (4 шт). Оптический микроскоп "Неофот" с цифровой камерой LEVENHUKC510. Оптическкие микроскопы МБС-9 (9 шт). Оптичесикй микроскоп МЕТАМ ЛВ-41 с цифровой камерой и периферийным оборудованием Toshiba 40HL 93RK. Оптичесикй микроскоп МЕТАМ РВ-22 с окулярным фотоадаптером и ЦФК "Olimpus". Микротвердомер ПМТ-3М.

		МВЕ-71. Микроскоп МИМ-8М. Компьютер FORMOZA E450
		-
17	Лаборатория термической обработки ауд. А-311	intel Ore 2 Duo. Твердомер ТК. Твердомер ТШ. Твердомер ТП2. машина отрезная. Станок шлифовальнополировальный Р-2G LH-Р-2G. Станок ПШСМ (2шт). Установка для электролитического травления. Печь СШОЛ 1.16/12м (2 шт). Печь СНОЛ 1,6х2,5. Потенциометр КСП-4 (4 шт). Электрическая печь СНОЛ2,5-4,1
		(3 шт.). Электропечь СНОЛ 7.2/1100 (2шт). Шкаф вытяжной ШВМ-К.
17	Лаборатория "Сварки" ауд Т-101	Три поста ручной дуговой сварки, оборудованные трасфоматорами сварочными типа ОСТА 350. Сварочный аппарат "ГРАНИТ". Машина электросварочная МШМ50.Преобразователь саврочный универсальный ПСЦ-500.
17	Лаборатория "Металлургии и литейного производства" ауд. Т- 102	Индукционная плавильная печь ИПП-25. Дуговая сталеплавильная печь постоянного тока ДСППТО,06(л). Пирометр С-20-4. Измеритель регулятор ТРМ138Р 8-каканльный. Термометр цифровой ТТЦ 9410/Ex/M1/t1050/ГП/К. Электопечь СНОЛ 1,2/1200. Прибор и устройства для определения литейных свойств литейных свойтсв сплавов. Прозрачная изложница для проведения холодного моделирования процессов затвердевания слитков различной геометрии.
17	Лаборатория обработки металлов давлением ауд.Т-005	Прессы усилием 10 и 20 т на базе испытательных машин тиа УММ. Комплект матриц для моделироваия процесов ОМД. Твердомер ТШ. Стан прокатный.
17	Лаборатория механической обработки, ауд. Т-006	Станок токарно-винторезный 1A616. Станок консольнофрезерный 6C12. Станок вертикальносверлильный 2Б125. Станок токарный ТВ-4. Точило двухстороннее 3Б634.

Стереоскопический микорсокоп МСП-2 вариант 3. Микроскоп

Структура металлургического предприятия с неполным циклом производства

чёрных металлов.

Металлургия является одной из ключевых отраслей российской промышленности и состоит из двух отраслей: черной и цветной металлургии. Чёрная металлургия включает добычу и обогащение руд чёрных металлов, производство чугуна, стали и ферросплавов. К чёрной металлургии относят также производство проката чёрных металлов, стальных, чугунных и других изделий из

К цветной металлургии относят добычу, обогащение руд цветных металлов, производство цветных металлов и их сплавов. С металлургией тесно связаны коксохимия, производство огнеупорных материалов.

Продукция металлургии служит основой развития машиностроения, металлообработки, строительства, да и всего, что изобретено человеком. Без развитого металлургического комплекса невозможен прогресс экономики.

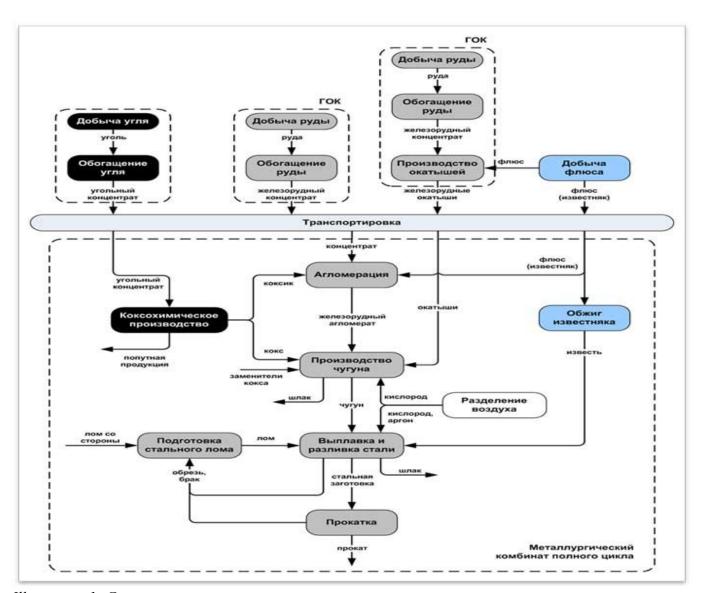


Illustration 1: Схема получения стали

2.1 Краткое описание формы управления и структуры управления предприятием

История завода «Красный Октябрь»:

История «Красного Октября» - это череда ярких событий, вписанных в общую летопись трудовых побед нашей страны.

В ноябре 1898 г. была пущена первая мартеновская печь. Именно эта дата считается официальным днем основания завода. За годы первых пятилеток (1929-1940 гг.) завод был коренным образом реконструирован и превращён в важнейшую базу производства высококачественной стали для предприятий автомобильной, тракторной промышленности, c.-x. машиностроения. Наращивая темпы производства и осваивая новые марки, к 1941 г. предприятие становится единственным металлургическим гигантом Юга страны, производящим 9 % всей выпускаемой стали для оборонной промышленности СССР. Во время Великой Отечественной войны 1941-45 гг. завод был полностью разрушен, но уже через 5 мес. после окончания Сталинградской битвы 31 июля 1943 завод выдал первую плавку стали, а 31 августа - первую тонну проката. К 1949 г. был превзойден довоенный уровень производства.

Свою действующую структуру и окончательную специализацию завод получил уже в послевоенное время. Основные производственные мощности были запущены в 50 - 70-е годы. К 1986 году завод располагал производственным потенциалом, способным обеспечить в год выплавку стали в объеме 2 млн. тонн, проката - 1,5 млн. тонн. Его доля составляла 12 % производства качественных сталей в стране, в т. ч. Нержавеющих сталей - 14 %, стали электрошлакового переплава - 52 %. В сортаменте завода насчитывалось 500 марок стали, выпускаемой по стандартам РФ, Германии, США, Японии.

Сегодня "Красный Октябрь - одно из мощнейших предприятий спецсталей в России, ведущий производитель нержавеющего проката в стране.

2.2 Описание организации и управления деятельностью структурного подразделения

Волгоградское металлургическое предприятие «Красный Октябрь» сегодня является одним из крупнейших отечественных производителей качественного металлопроката и занимает лидирующее положение на российском рынке Металл «Красного Октября» нержавеющей стали. производства находит отраслях, автомобилестроение применение таких как авиационная промышленность, химическое, нефтяное, энергетическое машиностроение, добыча нефти и природного газа.

«Красный Октябрь» был основан 30 апреля 1897 года французским акционерным Уральско-Волжским металлургическим обществом на окраине города Царицына, а уже в ноябре 1898 года была пущена первая мартеновская печь. Наращивая темпы производства и осваивая новые марки, к 1941 году предприятие становится единственным металлургическим гигантам Юга страны, производящим 9% всей выпускаемой стали для оборонной промышленности СССР. Несмотря на то, что «Красный Октябрь» стал ареной ожесточенных и кровопролитных боёв во время Великой Отечественной войны и был полностью остановлен 23 августа 1942 года, уже к 1949 году довоенный уровень производства был превзойден.

Свою действующую структуру и окончательную специализацию предприятие получило уже в послевоенное время. Основные производственные мощности были запущены в 50-70-е годы, К 1986 году «Красный Октябрь» располагал производственным потенциалом, способным обеспечить в год выплавку стали в объеме 2 миллиона тонн, проката — в объеме 1.5 миллиона тонн. Его доля составляла 12% производства качественных сталей в стране, в т.ч. нержавеющих сталей - 14%, стали злектрошлакового переплава - 52%. Начиная с 1999 года наращиваются объёмы производства, одновременно проводится реконструкция производственных мощностей и осваиваются новые виды продукции.

В 2018 году «Красный Октябрь» отметил 120-летний юбилей и взял курс на развитие. Сегодня предприятие производит около 900 марок стали специального назначения и 500 видов профилей проката. По итогам первого полугодия 2020 года

«Красный Октябрь» увеличил занимаемую долю рынка нержавеющей стали до 33% и нарастил объемы выпуска коррозионностойкого проката на 23%.

Действующая на предприятии система менеджмента качества (СМК) соответствует международному стандарту ISO 9001:2015.

Предприятие также имеет:

- Свидетельство о признании изготовителя сортового проката судостроительной стали нормальной и повышенной прочности, проката из коррозионностойкой стали, выданное Российским морским регистром судоходства;
- Свидетельство о признании изготовителя круглого проката для машиностроения из углеродистой, углеродисто-марганцевой и аустенитной сталей, выданное классификационным и сертификационным обществом DNV GL (Норвегия).

Кроме того, «Красный Октябрь» продлил сертификат соответствия правилам AD 2000-Merkblatt W0 и Директиве 2014/68/EU. Этот документ международного уровня, выданный органом по сертификации TUV SUD, подтверждает, что предприятие имеет оборудование, обеспечивающее профессиональные и отвечающие современному уровню техники производство и контроль и применяет систему менеджмента качества, обеспечивающую производство и контроль изделий в соответствии с техническими нормами и стандартами.

На «Красном Октябре» действует система экологического управления в соответствии с международным стандартом ISO 14001:2015.

Ha предприятии обновление продолжается поэтапное оборудования, приобретение новых машин И агрегатов, совершенствуются технологии производства. Значительное внимание уделяется вопросам социальной политики: создаются комфортные условия труда, проводятся корпоративные мероприятия, благоустроена прилегающая к заводоуправлению территория.

2.3 Основной перечень продукции, выпускаемой предприятием или структурным подразделением, ее целевое назначение и соответствие современным требованиям

Комбинат располагает техническими возможностями для выплавки следующих сталей:

- сталь высоколегированная коррозионностойкая, жаростойкая, жаропрочная;
- сталь теплоустойчивая;
- сталь для проката повышенной прочности;
- сталь инструментальная легированная и углеродистая;
- сталь подшипниковая;
- сталь рессорно-пружинная;
- сталь легированная конструкционная;
- сталь углеродистая качественная конструкционная;
- сталь углеродистая обыкновенного качества;
- сталь для армирования железобетонных конструкций.

Электросталеплавильные цехи имеют в своем составе современное оборудование внепечной обработки стали, включая вакуумирование, что позволяет производить особо низкоуглеродистые и высоколегированные стали, отвечающие самым высоким требованиям потребителя.

Многие марки стали по желанию заказчика могут быть выполнены методом электрошлакового переплава. Завод может производить и реализовывать слитки ЭШП: слитки квадратного сечения 550х550 мм массой 5,5 т. и 650х650 мм массой 6,5 т. и слитки листовые сечением 500х1000 мм массой от 6,0 до 12,0 т.

Сталеплавильное производство имеет в своем составе следующие цеха:

Электросталеплавильный цех №2 (ЭСПЦ-2) в составе 2-х дуговых сталеплавильных печей (ДСП) средней емкостью 130т. Специализация цеха - выплавка легированной конструкционной, подшипниковой, инструментальной, коррзионностойкой стали. Выплавка стали в ДСП производится по одношлаковой технологии с дальнейшей доводкой металла

на установке печь – ковш (УПК – 115), или агрегате ковш- печь (АКП – 140). В цехе имеется установка вакуумирования стали (УВС-130) камерного типа, которая позволяет проводить дегазацию металла, а также ваккум-кислородное рафинирование при производстве коррозионностойких сталей. Жидкая сталь после обработки металла на УПК (АКП), или УВС разливается сифонным способом в изложницы для слитков массой 6,7 или 6,9т, которые в дальнейшем направляются на стан 1150 для проката.

2. Электросталеплавильный цех №3. Цех предназначен для производства высококачественных сталей проектной мощностью 125 тыс. тонн в год. На данное время в эксплуатации находятся 5 установок монофилярного электрошлакового переплава и 2 установки бифилярного электрошлакового переплава. Для переплава используются катаные электроды сечением 370Х370мм, произведенные на стане 1150 из слитков ЦФЛ и ЭСПЦ-2. Переплав на установках ЭШП-10Г и ЭШП-10ГИ2 осуществляется в слитки массой 5,5; 6,5т квадратного сечения. 8,0; 11,5 прямоугольного сечения. Для термообработки полученных слитков имеются 13 печей с злектронагревателями (электроколодцы) с садкой (5,5-30)т.

Список используемой литературы

- 1. Ярушин, С.Г. Технологические процессы в машиностроении [Электронный ресурс]: учеб. для бакалавров / С.Г. Ярушин. М.: Юрайт, 2017. 564 с. (Бакалавр. Академический курс). ISBN 978-5-9916-3191-4. URL:https://biblio-online.ru/book/F3CFDF6C-0A02-4D5D-8FD2-84141B415BD0
- 2. Черепахин, А.А. Технология конструкционных материалов. Сварочное производство [Электронный ресурс]: учеб. для академ. бакалавров / А.А. Черепахин, В.М. Виноградов, Н.Ф. Шпунькин. 2-е изд., испр. и доп. М.: Юрайт, 2016. 273 с. (Бакалавр. Академический курс. Модуль). ISBN 978-5-9916-8581-8. URL:https://biblio-online.ru/book/B3AAD54D-3C0D-4620-975B-0461E3C81646
- 3. Рогов, В.А. Материаловедение и технология конструкционных материалов. Штамповочное и литейное производство [Электронный ресурс]: учеб. для вузов / В.А. Рогов, Г.Г. Позняк. 2-е изд., испр. и доп. —М.: Юрайт, 2016. 330 с. (Университеты России). ISBN 978-5-9916-8526-9. URL:https://biblio-online.ru/book/4EBAД10Е- A76E-4E78- A3Д3- ЕДД786E2937E
- 4. Технология конструкционных материалов [Текст]: учебник /под ред. А. М. Дальского. 6-е изд., испр. и доп. М: Машиностроение, 2005 592 с. ISBN 5-217-03311-8.
- 5. Материаловедение и технология конструкционных материалов [Текст]: учеб. пособие / под. ред. О.С. Комарова. 3-е изд., испр. и доп. Минск: Новое знание, 2009. 671 с.
- 6. Горохов, В.А. Материалы и их технологии. Часть 1. [Электронный ресурс]: учеб. /В.А. Горохов, Н.В. Беляков, А.Г. Схиртладзе. Электр. дан. Минск: Новое знание. 2014- 589 с.- . Режим доступа: https://e.lanbook.com/book/49450
- 7. Горохов, В.А. Материалы и их технологии. Часть 2. [Электронный ресурс]: учеб. /В.А. Горохов, Н.В. Беляков, А.Г. Схиртладзе. Электр. дан. Минск: Новое знание. 2014- 533 с.- . Режим доступа: https://e.lanbook.com/book/49451